Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : 639-650, 2010.
Article in English | WPRIM | ID: wpr-162253

ABSTRACT

An abrupt increase of intracellular Ca2+ is observed in cells under hypoxic or oxidatively stressed conditions. The dysregulated increase of cytosolic Ca2+ triggers apoptotic cell death through mitochondrial swelling and activation of Ca2+-dependent enzymes. Transglutaminase 2 (TG2) is a Ca2+-dependent enzyme that catalyzes transamidation reaction producing cross-linked and polyaminated proteins. TG2 activity is known to be involved in the apoptotic process. However, the pro-apoptotic role of TG2 is still controversial. In this study, we investigate the role of TG2 in apoptosis induced by Ca2+-overload. Overexpression of TG2 inhibited the A23187-induced apoptosis through suppression of caspase-3 and -9 activities, cytochrome c release into cytosol, and mitochondria membrane depolarization. Conversely, down-regulation of TG2 caused the increases of cell death, caspase-3 activity and cytochrome c in cytosol in response to Ca2+-overload. Western blot analysis of Bcl-2 family proteins showed that TG2 reduced the expression level of Bax protein. Moreover, overexpression of Bax abrogated the anti-apoptotic effect of TG2, indicating that TG2-mediated suppression of Bax is responsible for inhibiting cell death under Ca2+-overloaded conditions. Our findings revealed a novel anti-apoptotic pathway involving TG2, and suggested the induction of TG2 as a novel strategy for promoting cell survival in diseases such as ischemia and neurodegeneration.


Subject(s)
Humans , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Calcimycin/pharmacology , Calcium/metabolism , Caspases/metabolism , Cell Death , Cell Survival , Cytochromes c/metabolism , Down-Regulation , GTP-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Ionophores/pharmacology , Mitochondria/metabolism , Transglutaminases/metabolism , bcl-2-Associated X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL